skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hasanovic, Moamer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hagan, David J.; McKee, Michael (Ed.)
    Quantum technologies are expected to be among the most transformational technologies of the twenty-first century, changing how we sense the world around us, approach security, and process critical information. Transitioning the industry from quantum research labs to the commercial environment requires a sizable workforce skilled in supporting Quantum 2.0. To achieve the goal of the entire quantum ecosystem, society at all levels needs to be aware of this emerging field and then be inspired, attracted, educated, and trained with the new quantum skills and competencies. This poses a challenge as quantum science is a difficult and counterintuitive subject. How is a subject such as quantum mechanics that, as the famous quantum scientist Richard Feynman once said, “nobody fully understands” to be taught? In this presentation, we will share our experiences and results of EdQuantum, an NSF-funded project whose goal is to develop a curriculum to train future quantum technicians. The proposed curriculum intends to provide an essential first step in quantum education at the associate’s level. The curriculum relies heavily on a visual, hands-on approach that is based on commercially available quantum educational hardware. The curriculum strives to bring complex quantum science to a level understandable to individuals without a solid scientific background through algebra-based theory and simple experiments. As such, it may also be used to raise awareness and inspire high school students to seek careers as future quantum scientists. 
    more » « less